
UNLEASHING POTENTIAL: HARNESSING

FOUNDATION MODELS (LARGE LANGUAGE

MODELS) IN BUSINESS AND RESEARCH

FATEM EH H . FARD

ASSI STANT PRO FESSOR, UNI VERSI TY O F BRI T I SH CO LUM BIA

2

3

4

5

6

1. Offer context

2. Include helpful information upfront

3. Give examples

4. Tell it the length of the response you want

5. Define the expected formats

6. Ask it to help you come up with a prompt

7. Use some of these handy expressions

• "Let's think step by step"

• "Thinking backwards"

• "In the style of [famous person]"

Prompt Engineering

Source: https://zapier.com/blog/gpt-prompt/

7

1. Give examples

Prompt Engineering

Source: https://zapier.com/blog/gpt-prompt/

FAILURES?

9

• Bias

• Ethics

• Logics

• Hallucination

• Lack of knowledge

• And many others

LLMs Failure

WHAT ARE LANGUAGE
MODELS?

11

12

Source: https://huggingface.co/blog/large-language-models

13

Finetuning Pre-trained Language Models (PLMs)

PLM
Fine
Tune

Test

14

Finetuning Large Language Models (LLMs)

LLM
Fine
Tune

Test

LLM
Show

Examples
Obtain
Output

Expensive and requires GPUs

LLM Query Answer

Examples seen so far

15

16

17

18

19

20

21

22

23

24

Finetuning Large Language Models (LLMs)

LLM
Fine
Tune

Test

LLM
Show

Examples
Obtain
Output

Expensive and requires GPUs

LLM Query Answer

Examples seen so far

25

Many new domains

• Domain specific data

• Domain specific data structure and format

Prompt Engineering

Non-generative tasks (e.g., classification)

Data availability: Zero or few examples

Low resource languages

Inaccurate results are not acceptable

Challenges

26

Natural Language Processing 4 Software Engineering

User Feedback Analysis

• User reviews, online discussions

Empirical Studies, MSR

• Data mining

• Finding the reasons, relations, extracting new knowledge

Source Code Rep. Learning

• Comment/Code generation

• Code clone detection

Transfer Learning

• Transferability of the programming languages

• Few shot learning

• Knowledge transfer among tasks/languages using less
computational resources

27

Many new domains

• Domain specific data

• Domain specific data structure and format

Challenges

28

App Review Classification

29

Challenges With App Review Classification

New Domains (e.g., Security)

New Distributions (e.g., Twitter)

Availability of Dataset

• Time consuming

• Costly

• Imbalanced classes

Multiple Tasks (e.g., Sentiment classification)

30

RQ1: Comparing PLMs with MLs

RQ2: Comparing domain specific PLMs with general PLMs

RQ3: Comparing PLMs with MLs for different settings

• Binary vs multi-class setting,

• Zero-shot classification,

• Multi-task setting (i.e. different app-review analysis tasks),

• Classification of user-reviews collected from different resources (i.e.,

Twitter, App Store).

Questions

31

• 16 different labels

• Highly imbalanced classes

Challenges with this data

32

RQ1

33

❑ Domain specific models

slightly improve the

prediction time.

❑ More custom data improves

the performance of the

models more.

RQ2

34

Binary
Classification

35

Zero-Shot

36

Multi-Task and Multi-Resource

37

❑ PLMs can be used for all settings when higher performance is required

❑ Use Custom-PLMs over PLMs

❑ Use binary classification

Take Aways

38

Inaccurate results are not acceptable

Challenges

39

Retrieval Augmented LLMs

New Data (e.g., API versions, URLs)

Domain Specific Data

Private Information (User Info, Business)

Lack of computational resources

40

Retrieval Augmented Tool with Generative Power of
LLMs

41

Retrieval Augmented Tool with Generative Power of
LLMs

42

Retrieval

Augmented Tool

with Generative

Power of LLMs

43

Data availability: Zero or few examples

Low resource languages

Lack of computational power

Challenges

44

Image from: https://github.com/IBM/Project_CodeNet

45

Low Resource Languages
and Scientific Programming

Languages

Computational Efficiency

46

1. Fine-tuning

2. Domain adaptation

Adapters

Internal architecture of Transformer blocks using

adapters (Left Figure) and internal architecture of

language adapters (Right Figure)

Fig from: N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M.

Attariyan, and S. Gelly, “Parameter efficient transfer learning for nlp,” in International Conference on

Machine Learning. PMLR, 2019, pp. 2790–2799

48

Adapters for SE?

• Do they work for bimodal transfer?

• How do they perform for code-
related tasks?How to?

• Other purposes of adapters?

• New adapters for source code?SE-specific
adapters?

MODE-X

Goel, Divyam, Grover, Ramansh, and Fatemeh H.

Fard. On the cross-modal transfer from natural

language to code through adapter modules.

50

➢ Knowledge transfer from pre-trained models (PLMs) trained on Natural Language

to Source Code

➢ Performance of adapters for code-PLMs

MODE-X

Goel, Divyam, Grover, Ramansh, and Fatemeh H. Fard. On the cross-modal transfer from natural language to

code through adapter modules. In Proceedings of the 30th IEEE/ACM International Conference on Program

Comprehension, ICPC ’22, page 71–81, New York, NY, USA, 2022.

51

MODE-X

RoBERTa

MODE-X

CodeBERT

52

Accuracy Scores on Cloze Test

Model Python Java

CT max/min

RoBERTa 59.18 59.75

RoBERTa+LA 66.30 66.81

CodeBERT 79.27 91.08

CT-all

RoBERTa 54.49 50.75

RoBERTa+LA 74.35 75.63

CodeBERT 83.33 75.53

53

Code Clone Detection Results

Model Dataset Score

RoBERTa
POJ-104

(MAP@R)

81.52

MODE-X (C/C++) 82.40

CodeBERT 86.48

RoBERTa
BCB

(F1)

95.61

MODE-X (Java) 96.61

CodeBERT 96.65

RoBERTa
SCD-88

(MAP@R)

73.90

MODE-X (Python) 75.65

CodeBERT 78.95

54

Parameter budget of Java-adapters

and CodeBERT in millions

Parameter budget of Python-

adapters and CodeBERT in

millions

Computational Efficiency of Adapters

55

Computational Efficiency of Adapters

Parameter budget of adapters and

CodeBERT for code clone

detection

56

➢ Utilize adapters for knowledge
transfer from N-PLM to source code
(SE-tasks)

➢ Adapters are more efficient in terms
of the number of parameters,
memory usage, and inference time.

57

Code Summarization Results
Smoot BLEU-4

Models/Languages Ruby JS Go Python Java PHP

GraphCodeBERT + TA 14.53 16.54 23.74 18.73 19.08 25.05

CodeBERT+TA 14.12 15.67 23.21 18.47 18.99 25.55

MODE-X 12.79 14.20 23.05 17.72 18.43 24.27

GraphCodeBERT 12.62 14.79 18.40 18.02 19.22 25.45

CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16

RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02

MODE-X has better or on par results with C-PLMs

58

Code Summarization Results
Smoot BLEU-4

Models/Languages Ruby JS Go Python Java PHP

GraphCodeBERT + TA 14.53 16.54 23.74 18.73 19.08 25.05

GraphCodeBERT 12.62 14.79 18.40 18.02 19.22 25.45

CodeBERT+TA 14.12 15.67 23.21 18.47 18.99 25.55

CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16

C-PLMs plus adapters have better results than fine-

tuning them normally.

59

Code Summarization Results
Smoot BLEU-4

Models/Languages Ruby JS Go Python Java PHP

GraphCodeBERT + TA 14.53 16.54 23.74 18.73 19.08 25.05

CodeBERT+TA 14.12 15.67 23.21 18.47 18.99 25.55

MODE-X 12.79 14.20 23.05 17.72 18.43 24.27

GraphCodeBERT 12.62 14.79 18.40 18.02 19.22 25.45

CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16

RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02

Bimodal Data 52.9K 143.2K 317.8K 458.2K 500.7K 662.9K

60

If we encourage the model weights to be
closer to the pre-trained model, we could
improve the fine-tuning results without

using additional data/parameters.

61

Go Attention

62

Ruby Attention

63

How to?

• Other purposes of
adapters?

• New adapters for source
Code?

SE-specific
adapters?

CODEBERTER

Iman Saberi, Fatemeh H. Fard, Model-Agnostic

Syntactical Information for Pre-Trained

Programming Language Models.

65

Picture from: D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu et al.,

“Graphcodebert: Pre-training code representations with data flow,” in International Conference on Learning

Representations.

Picture from: Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware unified pre-trained encoder-decoder models for

code understanding and generation,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing, 2021, pp. 8696–8708.

CodeT5

GraphCodeBERT

Require Pre-Training

66

Challenge: How to impose syntactical

information of source code to existing

pretrained models?

67

Computational
Efficiency

Avoid Pre-
training in

Imposing Code
Structure

NER Adapter

Avoid pre-training while adding new information

68

Token Type

Classification Loss

(TTC)

NER Adapter

69

Overall Architecture

The input data flow for the sample when fed into a transformer block equipped with

NER, language and Fusion adapters.

70

Code Summarization
Automatically generating descriptions of the functionality of a given code

Works well for languages with

less training data

71

Code Refinement

Method/Model BLEUNSEdit Accuracy

Naïve copy 78.06 0.0

LSTM 76.76 10.0

Transformer 77.21 14.7

RoBERTa (code) 77.30 15.9

CodeBERT 77.42 16.4

CodeBERTER 78.20 17.8

CoText 77.91 22.64

NSEdit 71.06 24.04

Identify and fix bugs automatically

72

➢ CodeBERTER (right)

➢ CodeBERT (figure)

Attention Change with NER Adapter

73

SE-Specific adapters can help:
➢ Avoid pre-training
➢ Impose new information
➢ Improve the results

74

Many new domains

• Domain specific data

• Domain specific data structure and format

Prompt Engineering

Non-generative tasks (e.g., classification)

Data availability: Zero or few examples

Low resource languages

Inaccurate results are not acceptable

Challenges

75

Review of LLMs, usages and failure modes

Review of overall process of using pre-trained LMs (and LLMs)

Overview of some challenges

Some techniques to address the challenges

Summary

