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1. Offer context

2. Include helpful information upfront

3. Give examples

4. Tell it the length of the response you want

5. Define the expected formats

6. Ask it to help you come up with a prompt

7. Use some of these handy expressions

• "Let's think step by step"

• "Thinking backwards"

• "In the style of [famous person]"

Prompt Engineering

Source: https://zapier.com/blog/gpt-prompt/
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1. Give examples

Prompt Engineering

Source: https://zapier.com/blog/gpt-prompt/



FAILURES? 
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• Bias

• Ethics

• Logics

• Hallucination 

• Lack of knowledge

• And many others

LLMs Failure



WHAT ARE LANGUAGE 
MODELS?
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Source: https://huggingface.co/blog/large-language-models
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Finetuning Pre-trained Language Models (PLMs)

PLM
Fine 
Tune

Test
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Finetuning Large Language Models (LLMs)

LLM
Fine 
Tune

Test

LLM
Show 

Examples
Obtain 
Output

Expensive and requires GPUs

LLM Query Answer

Examples seen so far
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Finetuning Large Language Models (LLMs)

LLM
Fine 
Tune

Test

LLM
Show 

Examples
Obtain 
Output

Expensive and requires GPUs

LLM Query Answer

Examples seen so far
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Many new domains 

• Domain specific data

• Domain specific data structure and format

Prompt Engineering

Non-generative tasks (e.g., classification)

Data availability: Zero or few examples

Low resource languages

Inaccurate results are not acceptable

Challenges
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Natural Language Processing 4 Software Engineering

User Feedback Analysis

• User reviews, online discussions

Empirical Studies, MSR

• Data mining

• Finding the reasons, relations, extracting new knowledge

Source Code Rep. Learning 

• Comment/Code generation

• Code clone detection

Transfer Learning

• Transferability of the programming languages 

• Few shot learning

• Knowledge transfer among tasks/languages using less 
computational resources
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Many new domains 

• Domain specific data

• Domain specific data structure and format

Challenges
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App Review Classification
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Challenges With App Review Classification

New Domains (e.g., Security)

New Distributions (e.g., Twitter)

Availability of Dataset

• Time consuming

• Costly

• Imbalanced classes

Multiple Tasks (e.g., Sentiment classification)
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RQ1: Comparing PLMs with MLs

RQ2: Comparing domain specific PLMs with general PLMs

RQ3: Comparing PLMs with MLs for different settings

• Binary vs multi-class setting, 

• Zero-shot classification, 

• Multi-task setting (i.e. different app-review analysis tasks), 

• Classification of user-reviews collected from different resources (i.e., 

Twitter, App Store).

Questions
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• 16 different labels

• Highly imbalanced classes

Challenges with this data
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RQ1



33

❑ Domain specific models 

slightly improve the 

prediction time. 

❑ More custom data improves 

the performance of the 

models more.

RQ2
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Binary 
Classification
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Zero-Shot
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Multi-Task and Multi-Resource
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❑ PLMs can be used for all settings when higher performance is required

❑ Use Custom-PLMs over PLMs

❑ Use binary classification

Take Aways
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Inaccurate results are not acceptable

Challenges
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Retrieval Augmented LLMs

New Data (e.g., API versions, URLs)

Domain Specific Data

Private Information (User Info, Business)

Lack of computational resources



40

Retrieval Augmented Tool with Generative Power of 
LLMs
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Retrieval Augmented Tool with Generative Power of 
LLMs
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Retrieval 

Augmented Tool 

with Generative 

Power of LLMs
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Data availability: Zero or few examples

Low resource languages

Lack of computational power

Challenges
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Image from: https://github.com/IBM/Project_CodeNet
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Low Resource Languages 
and Scientific Programming 

Languages

Computational Efficiency
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1. Fine-tuning

2. Domain adaptation

Adapters

Internal architecture of Transformer blocks using 

adapters (Left Figure) and internal architecture of 

language adapters (Right Figure) 

Fig from: N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. 

Attariyan, and S. Gelly, “Parameter efficient transfer learning for nlp,” in International Conference on 

Machine Learning. PMLR, 2019, pp. 2790–2799
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Adapters for SE?

• Do they work for bimodal transfer?

• How do they perform for code-
related tasks?How to?

• Other purposes of adapters?

• New adapters for source code?SE-specific 
adapters?



MODE-X

Goel, Divyam, Grover, Ramansh, and Fatemeh H. 

Fard. On the cross-modal transfer from natural 

language to code through adapter modules. 
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➢ Knowledge transfer from pre-trained models (PLMs) trained on Natural Language 

to Source Code

➢ Performance of adapters for code-PLMs

MODE-X

Goel, Divyam, Grover, Ramansh, and Fatemeh H. Fard. On the cross-modal transfer from natural language to 

code through adapter modules. In Proceedings of the 30th IEEE/ACM International Conference on Program 

Comprehension, ICPC ’22, page 71–81, New York, NY, USA, 2022.
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MODE-X

RoBERTa

MODE-X

CodeBERT
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Accuracy Scores on Cloze Test

Model Python Java

CT max/min

RoBERTa 59.18 59.75

RoBERTa+LA 66.30 66.81

CodeBERT 79.27 91.08

CT-all

RoBERTa 54.49 50.75

RoBERTa+LA 74.35 75.63

CodeBERT 83.33 75.53
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Code Clone Detection Results

Model Dataset Score

RoBERTa
POJ-104 

(MAP@R)

81.52

MODE-X (C/C++) 82.40

CodeBERT 86.48

RoBERTa
BCB

(F1)

95.61

MODE-X (Java) 96.61

CodeBERT 96.65

RoBERTa
SCD-88 

(MAP@R)

73.90

MODE-X (Python) 75.65

CodeBERT 78.95
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Parameter budget of Java-adapters 

and CodeBERT in millions

Parameter budget of Python-

adapters and CodeBERT in 

millions

Computational Efficiency of Adapters
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Computational Efficiency of Adapters

Parameter budget of adapters and 

CodeBERT for code clone 

detection
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➢ Utilize adapters for knowledge 
transfer from N-PLM to source code 
(SE-tasks)

➢ Adapters are more efficient in terms 
of the number of parameters, 
memory usage, and inference time. 
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Code Summarization Results
Smoot BLEU-4

Models/Languages Ruby JS Go Python Java PHP

GraphCodeBERT + TA 14.53 16.54 23.74 18.73 19.08 25.05

CodeBERT+TA 14.12 15.67 23.21 18.47 18.99 25.55

MODE-X 12.79 14.20 23.05 17.72 18.43 24.27

GraphCodeBERT 12.62 14.79 18.40 18.02 19.22 25.45

CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16

RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02

MODE-X has better or on par results with C-PLMs
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Code Summarization Results
Smoot BLEU-4

Models/Languages Ruby JS Go Python Java PHP

GraphCodeBERT + TA 14.53 16.54 23.74 18.73 19.08 25.05

GraphCodeBERT 12.62 14.79 18.40 18.02 19.22 25.45

CodeBERT+TA 14.12 15.67 23.21 18.47 18.99 25.55

CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16

C-PLMs plus adapters have better results than fine-

tuning them normally.
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Code Summarization Results
Smoot BLEU-4

Models/Languages Ruby JS Go Python Java PHP

GraphCodeBERT + TA 14.53 16.54 23.74 18.73 19.08 25.05

CodeBERT+TA 14.12 15.67 23.21 18.47 18.99 25.55

MODE-X 12.79 14.20 23.05 17.72 18.43 24.27

GraphCodeBERT 12.62 14.79 18.40 18.02 19.22 25.45

CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16

RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02

Bimodal Data   52.9K 143.2K 317.8K 458.2K 500.7K 662.9K
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If we encourage the model weights to be 
closer to the pre-trained model, we could 
improve the fine-tuning results without 

using additional data/parameters. 
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Go Attention
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Ruby Attention
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How to?

• Other purposes of 
adapters?

• New adapters for source 
Code?

SE-specific 
adapters?



CODEBERTER

Iman Saberi, Fatemeh H. Fard, Model-Agnostic 

Syntactical Information for Pre-Trained 

Programming Language Models. 
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Picture from: D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu et al., 

“Graphcodebert: Pre-training code representations with data flow,” in International Conference on Learning 

Representations.

Picture from: Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware unified pre-trained encoder-decoder models for 

code understanding and generation,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language 

Processing, 2021, pp. 8696–8708.

CodeT5

GraphCodeBERT

Require Pre-Training
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Challenge: How to impose syntactical 

information of source code to existing 

pretrained models?
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Computational 
Efficiency

Avoid Pre-
training in 

Imposing Code 
Structure

NER Adapter

Avoid pre-training while adding new information
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Token Type 

Classification Loss 

(TTC)

NER Adapter
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Overall Architecture

The input data flow for the sample when fed into a transformer block equipped with 

NER, language and Fusion adapters.
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Code Summarization
Automatically generating descriptions of the functionality of a given code 

Works well for languages with 

less training data
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Code Refinement

Method/Model BLEUNSEdit Accuracy

Naïve copy 78.06 0.0

LSTM 76.76 10.0

Transformer 77.21 14.7

RoBERTa (code) 77.30 15.9

CodeBERT 77.42 16.4

CodeBERTER 78.20 17.8

CoText 77.91 22.64

NSEdit 71.06 24.04

Identify and fix bugs automatically
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➢ CodeBERTER (right)

➢ CodeBERT (figure)

Attention Change with NER Adapter
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SE-Specific adapters can help:
➢ Avoid pre-training
➢ Impose new information
➢ Improve the results
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Many new domains 

• Domain specific data

• Domain specific data structure and format

Prompt Engineering

Non-generative tasks (e.g., classification)

Data availability: Zero or few examples

Low resource languages

Inaccurate results are not acceptable

Challenges
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Review of LLMs, usages and failure modes

Review of overall process of using pre-trained LMs (and LLMs)

Overview of some challenges

Some techniques to address the challenges

Summary




