Rotations in 3D Graphics and the Gimbal Lock

Valentin Koch
Autodesk Inc.
January 27, 2016
1 Introduction

2 Rotation Matrices in \mathbb{R}^2

3 Rotation Matrices in \mathbb{R}^3

4 Gimbal Lock

5 Quaternions
About me

- MSc. Mathematics with thesis in Mathematical Optimization
- Principal Research Engineer at Autodesk, Inc.
- Infrastructure Optimization
- 3D environment, InfraWorks (similar to Sim City).
- Encountered Gimbal Lock using numerical optimization algorithms.
Presentation Road Map

1. Introduction
2. Rotation Matrices in \mathbb{R}^2
3. Rotation Matrices in \mathbb{R}^3
4. Gimbal Lock
5. Quaternions
A vector \((x, y)\) of magnitude \(r\), is rotated by an angle \(t\) about the origin. We recall that

\[
\cos t = \frac{x^*}{r},
\]
\[
\sin t = \frac{y^*}{r},
\]

and if \(r = 1\), we obtain

\[
x^* = \cos t,
\]
\[
y^* = \sin t.
\]
Given a point \((x, y)\) at an angle \(\alpha\) on the unit circle. We want to rotate it by angle \(\beta\). Hence

\[
x^* = \cos(\alpha + \beta).
\]

Using the trig identities, we see that

\[
x^* = \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta
\]

\[
= x \cos \beta - y \sin \beta.
\]

Similarly, we have

\[
y^* = y \cos \beta + x \sin \beta.
\]
Since

\[\begin{align*}
 x^* &= x \cos \beta - y \sin \beta, \\
 y^* &= y \cos \beta + x \sin \beta,
\end{align*} \]

we write

\[
\begin{pmatrix}
 x^* \\
 y^*
\end{pmatrix} = \begin{pmatrix}
 \cos \beta & -\sin \beta \\
 \sin \beta & \cos \beta
\end{pmatrix} \begin{pmatrix}
 x \\
 y
\end{pmatrix}
\]

and our rotation matrix in \(\mathbb{R}^2 \) is

\[
R = \begin{pmatrix}
 \cos \beta & -\sin \beta \\
 \sin \beta & \cos \beta
\end{pmatrix}.
\]
Presentation Road Map

1. Introduction
2. Rotation Matrices in \mathbb{R}^2
3. Rotation Matrices in \mathbb{R}^3
4. Gimbal Lock
5. Quaternions
Rotation Matrices in \mathbb{R}^3

Major axis approach

How to extend previous result to \mathbb{R}^3? General idea:

- \mathbb{R}^2 rotation around major axis x, y, and z
- Extend the 2x2 matrix to 3x3

Question

Why selecting 3 axis to rotate an object in \mathbb{R}^3?
Rotation Matrices in \mathbb{R}^3

Example rotation about z-axis

Example

Step 1 Take 2x2 rotation matrix

$$R = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}.$$

Step 2 Extend to 3x3 by adding z-axis, and keep z value unchanged

$$R_z = \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Valentin Koch (ADSK)
Rotation Matrices in \mathbb{R}^3

Basic rotation matrices

Given angles α, β, and γ, we obtain the basic rotations about the x-axis

$$R_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix},$$

the y-axis

$$R_y = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix},$$

and the z-axis

$$R_z = \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
Why are basic rotation matrices bad?

- Expensive to correct matrix *drifting*.
- Hard to interpolate nicely between two rotations.
- **Gimbal Lock!**
Matrix drift happens when multiple matrices are concatenated. Round off errors happens on some of the matrix elements, resulting in *sheared* rotations. Need to *orthonormalize* the matrix. Gram-Schmidt process is computationally expensive!
Rotation Matrices in \mathbb{R}^3

Linear Interpolation (LERP)

Example

Linearly interpolate between identity I and rotation A, which is $\pi/2$ around x-axis.

\[
R = 0.5 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + 0.5 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & -0.5 & 0.5 \end{pmatrix}
\]

Let $u = (0, 1, 0)^T$. Then $\|lu\| = \|Au\| = 1$.

But $\|Ru\| = \|(0, 0.5, -0.5)^T\| = \sqrt{0.5}$.

So R is **not a rotation matrix**!

You need a *Spherical Linear Interpolation* (SLERP) for the rotational parts, and LERP for the other parts. Complicated.
We want to rotate a sword by $\beta = \pi$ about the y-axis, and use rotations about the z and y-axis to move the sword down and up again.
We first want to rotate to $\beta = \frac{\pi}{2}$. Let $R = R_x R_y R_z$, which is

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix} \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Since $\cos \frac{\pi}{2} = 0$, and $\sin \frac{\pi}{2} = 1$, the above becomes

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

which equals

$$R = \begin{pmatrix} 0 & 0 & 1 \\ \sin \alpha \cos \gamma + \cos \alpha \sin \gamma & -\sin \alpha \sin \gamma + \cos \alpha \cos \gamma & 0 \\ -\cos \alpha \cos \gamma + \sin \alpha \sin \gamma & \cos \alpha \sin \gamma + \sin \alpha \cos \gamma & 0 \end{pmatrix}.$$
Using the facts that

\[
\sin(\alpha \pm \gamma) = \sin \alpha \cos \gamma \pm \cos \alpha \sin \gamma \\
\cos(\alpha \pm \gamma) = \cos \alpha \cos \gamma \mp \sin \alpha \cos \gamma
\]

we obtain

\[
R = \begin{pmatrix}
0 & 0 & 1 \\
\sin(\alpha + \gamma) & \cos(\alpha + \gamma) & 0 \\
-\cos(\alpha + \gamma) & \sin(\alpha + \gamma) & 0
\end{pmatrix}
\]
Gimbal Lock
Loosing a degree of freedom

From $\beta = 0$ to $\frac{\pi}{2}$, we now want to rotate $-\frac{\pi}{6}$ about the z-axis, and from $\beta = \frac{\pi}{2}$ to π, we want to rotate $-\frac{\pi}{6}$ about the x-axis. But since

$$R = \begin{pmatrix}
0 & 0 & 1 \\
\sin(\alpha + \gamma) & \cos(\alpha + \gamma) & 0 \\
-\cos(\alpha + \gamma) & \sin(\alpha + \gamma) & 0
\end{pmatrix},$$

is a rotation matrix about the z-axis, changing α or γ has the same effect! The angle $\alpha + \gamma$ may change, but the rotation happens always about the z-axis with unexpected results.

Watch this Video by PuppetMaster’s 3D experiences, CC-BY.
Gimbal Lock
Euler angles

Using Euler angles to steer pitch, roll, and yaw.

Pictures by MathsPoetry, CC BY-SA
Rotation Alternatives

How to avoid Gimbal Lock?

There are alternative rotations:

- Euler angles
- Axis-angle representation
- Quaternions
A rotation vector

\[r = \theta \hat{e}, \]

where \(\hat{e} = (e_x, e_y, e_z)^T \) is an arbitrary unit vector, and \(\theta \) is the angle of rotation about the axis \(\hat{e} \).

- No Gimbal Lock.
- Combining two rotations defined by Euler vectors is not simple.
- Cannot use LERP to interpolate.
Presentation Road Map

1. Introduction
2. Rotation Matrices in \mathbb{R}^2
3. Rotation Matrices in \mathbb{R}^3
4. Gimbal Lock
5. Quaternions
Quaternions

The holy grail of 3D rotations

- Introduced by William Rowan Hamilton in 1843
- An extension to complex numbers from two dimensions to three
- $i^2 = j^2 = k^2 = ijk = -1$
A *quaternion* is a quadruple formed by a *scalar* w, and a *vector* $v = (x, y, z)$. We write it as

$$q = (w, v).$$
Any rotation in \mathbb{R}^3 can be represented by a **unit quaternion**.

Definition

A *unit quaternion* is a quaternion q, such that $\|q\| = 1$, where $\|q\| = w^2 + x^2 + y^2 + z^2$.

All unit quaternions form a *hypersphere* in \mathbb{R}^4. Rotations happen on the surface of this hypersphere.
From axis-angle to quaternions

Given an axis defined by unit vector

\[\mathbf{u} = (u_x, u_y, u_z), \]

and an angle \(\theta \).

How do I obtain a rotation quaternion?
Any point in \mathbb{R}^2 can be represented by a complex number, where the *real* part lays on the x-axis, and the *imaginary* part on the y-axis.

Euler’s formula relates the trigonometric functions to the exponential function

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$
Let $\mathbf{i} = (1, 0, 0)^T$, $\mathbf{j} = (0, 1, 0)$ and $\mathbf{k} = (0, 0, 1)$. Given \mathbf{u} and θ, an extension to Euler’s Formula says that

$$e^{\mathbf{wv}} = e^{\frac{\theta}{2}(u_x \mathbf{i} + u_y \mathbf{j} + u_z \mathbf{k})} = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}(u_x \mathbf{i} + u_y \mathbf{j} + u_z \mathbf{k}).$$

Conversion of an axis-angle to a rotation quaternion

Given a unit vector $\mathbf{u} = (u_x, u_y, u_z) \in \mathbb{R}^3$ and a rotation angle θ about \mathbf{u}, the corresponding unit quaternion \mathbf{q} is

$$\mathbf{q} = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \mathbf{u}).$$
Example

We want to rotate 90° about the y-axis using a quaternion.

We know \(\mathbf{q} = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \mathbf{u}) \). The y-axis can be represented by \(\mathbf{u} = (0, 1, 0) \), and \(\theta = \frac{\pi}{2} \). We obtain the unit quaternion

\[
\mathbf{q} = (\cos \frac{\pi}{4}, 0, \sin \frac{\pi}{4}, 0).
\]

Great. What do we do with this rotation quaternion now?
Any vector \(\mathbf{v} \in \mathbb{R}^3 \) can be rotated using a rotation quaternion \(\mathbf{q} \) by

\[
\mathbf{q}\mathbf{p}\mathbf{q}^{-1},
\]

where \(\mathbf{p} = (0, \mathbf{v}) \), using the Hamilton product.

What is the Hamilton product and how do you take the inverse of a quaternion?
Hamilton Product

Definition

Let \(q_0 = (w_0, v_0) \) and \(q_1 = (w_1, v_1) \). The *Hamilton Product* is defined as

\[
q_0 q_1 = (w_0 w_1 - v_0 \cdot v_1, w_0 v_1 + w_1 v_0 + v_0 \times v_1)
\]

Using transposes \(q_0 = (w_0, x_0, y_0, z_0)^T \) and \(q_1 = (w_1, x_1, y_1, z_1)^T \), we can write

\[
q_0 q_1 = \begin{pmatrix}
w_0 w_1 - x_0 x_1 - y_0 y_1 - z_0 z_1 \\
w_0 x_1 + x_0 w_1 + y_0 z_1 - z_0 y_1 \\
w_0 y_1 - x_0 z_1 + y_0 w_1 + z_0 x_1 \\
w_0 z_1 + x_0 y_1 - y_0 x_1 + z_0 w_1
\end{pmatrix}.
\]

Warning

Quaternion multiplication is not commutative, \(q_0 q_1 \neq q_1 q_0 \).
Quatetion Inverse

Definition

The inverse of a quaternion \(q = (w, v) \) is computed as

\[
q^{-1} = \frac{(w, -v)}{\|q\|^2}.
\]

Addition and subtraction is the same as with complex numbers.
Given a rotation quaternion \(q = (w, x, y, z) \), we can rotate any vector \(v \in \mathbb{R}^3 \) using the rotation matrix

\[
R_q = \begin{pmatrix}
1 - 2y^2 - 2z^2 & 2xy - 2zw & 2xz + 2yw \\
2xy + 2zw & 1 - 2x^2 - 2z^2 & 2yz - 2xw \\
2xz - 2yw & 2yz + 2xw & 1 - 2x^2 - 2y^2
\end{pmatrix}.
\]
Quaternions

Compose rotations

Given a rotation defined by \(q_0 \), followed by \(q_1 \). They can be composed as

\[
q^* = q_1 q_0.
\]

Example

Sword movement We rotate \(\beta = \frac{\pi}{2} \) about the y-axis \(v_0 = (0, 1, 0) \), followed by \(\alpha = -\frac{\pi}{6} \) about the x-axis \(v_1 = (1, 0, 0) \). We obtain the quaternions

\[
q_0 = (\cos \frac{\pi}{4}, 0, \sin \frac{\pi}{4}, 0), \quad q_1 = (\cos \frac{-\pi}{12}, \sin \frac{-\pi}{12}, 0, 0).
\]

Compose them \(q = q_1 q_0 = (w, x, y, z) \), we get

\[
w = \cos \frac{-\pi}{12} \cos \frac{\pi}{4}, \quad x = \sin \frac{-\pi}{12} \cos \frac{\pi}{4},
\]

\[
y = \cos \frac{-\pi}{12} \sin \frac{\pi}{4}, \quad z = \sin \frac{-\pi}{12} \sin \frac{\pi}{4}.
\]
The same as with complex numbers.

- **LERP**

\[q_t = (1 - t)q_0 + tq_1 \]
References and Links

Links:

- Gimbal Lock
- Rotating Objects Using Quaternions
- Understanding Quaternions