Rotations in 3D Graphics and the Gimbal Lock

Presentation Road Map

(1) Introduction
(2) Rotation Matrices in \mathbb{R}^{2}
(3) Rotation Matrices in \mathbb{R}^{3}
(4) Gimbal Lock
(5) Quaternions

About me

- MSc. Mathematics with thesis in Mathematical Optimization
- Principal Research Engineer at Autodesk, Inc.
- Infrastructure Optimization

- 3D environment, InfraWorks (similar to Sim City).
- Encountered Gimbal Lock using numerical optimization algorithms.

Presentation Road Map

(1) Introduction

(2) Rotation Matrices in \mathbb{R}^{2}
(3) Rotation Matrices in \mathbb{R}^{3}

4 Gimbal Lock
(5) Quaternions

Rotation Matrix in \mathbb{R}^{2}

Rotation on the unit circle

A vector (x, y) of magnitude r, is rotated by an angle t about the origin. We recall that

$$
\begin{aligned}
\cos t & =\frac{x^{*}}{r}, \\
\sin t & =\frac{y^{*}}{r},
\end{aligned}
$$

and if $r=1$, we obtain

$$
\begin{gathered}
x^{*}=\cos t, \\
y^{*}=\sin t .
\end{gathered}
$$

Rotation Matrix in \mathbb{R}^{2}

Rotating an arbitrary point

Given a point (x, y) at an angle α on the unit circle. We want to rotate it by angle β. Hence

$$
x^{*}=\cos (\alpha+\beta)
$$

Using the trig identities, we see that

$$
\begin{aligned}
x^{*} & =\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& =x \cos \beta-y \sin \beta .
\end{aligned}
$$

Similarly, we have

$$
y^{*}=y \cos \beta+x \sin \beta
$$

Rotation Matrix in \mathbb{R}^{2}

Previous result in Matrix notation

Since

$$
\begin{aligned}
& x^{*}=x \cos \beta-y \sin \beta, \\
& y^{*}=y \cos \beta+x \sin \beta,
\end{aligned}
$$

we write

$$
\binom{x^{*}}{y^{*}}=\left(\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right)\binom{x}{y}
$$

and our rotation matrix in \mathbb{R}^{2} is

$$
R=\left(\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right)
$$

Presentation Road Map

(1) Introduction

(2) Rotation Matrices in \mathbb{R}^{2}
(3) Rotation Matrices in \mathbb{R}^{3}

4 Gimbal Lock
(5) Quaternions

Rotation Matrices in \mathbb{R}^{3}

Major axis approach

How to extend previous result to \mathbb{R}^{3} ? General idea:

- \mathbb{R}^{2} rotation around major axis x, y, and z
- Extend the 2×2 matrix to 3×3

Question

Why selecting 3 axis to rotate an object in \mathbb{R}^{3} ?

Rotation Matrices in \mathbb{R}^{3}

Example rotation about z-axis

Example

Step 1 Take 2×2 rotation matrix

$$
R=\left(\begin{array}{cc}
\cos \gamma & -\sin \gamma \\
\sin \gamma & \cos \gamma
\end{array}\right)
$$

Step 2 Extend to 3×3 by adding z-axis, and keep z value unchanged

$$
R_{z}=\left(\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Rotation Matrices in \mathbb{R}^{3}

Basic rotation matrices

Given angles α, β, and γ, we obtain the basic rotations about the x -axis

$$
R_{x}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right)
$$

the y-axis

$$
R_{y}=\left(\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right)
$$

and the z -axis

$$
R_{z}=\left(\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Rotation Matrices in \mathbb{R}^{3}

Disadvantages

Why are basic rotation matrices bad?

- Expensive to correct matrix drifting.
- Hard to interpolate nicely between two rotations.
- Gimbal Lock!

Rotation Matrices in \mathbb{R}^{3}

- Matrix drift happens when multiple matrices are concatenated.
- Round off errors happens on some of the matrix elements, resulting in sheared rotations.
- Need to orthonormalize the matrix.
- Gram-Schmidt process is computationally expensive!

Rotation Matrices in \mathbb{R}^{3}

Linear Interpolation (LERP))

Example

Linearly interpolate between identity I and rotation A, which is $\frac{\pi}{2}$ around x-axis.

$$
R=0.5\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+0.5\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & 0.5 \\
0 & -0.5 & 0.5
\end{array}\right)
$$

Let $u=(0,1,0)^{T}$. Then $\|I u\|=\|A u\|=1$.
But $\|R u\|=\left\|(0,0.5,-0.5)^{T}\right\|=\sqrt{0.5}$.

So R is not a rotation matrix!

You need a Spherical Linear Interpolation (SLERP) for the rotational parts, and LERP for the other parts. Complicated.

Presentation Road Map

(1) Introduction

(2) Rotation Matrices in \mathbb{R}^{2}
(3) Rotation Matrices in \mathbb{R}^{3}

4 Gimbal Lock
(5) Quaternions

Gimbal Lock

Sword movement
We want to rotate a sword by $\beta=\pi$ about the y-axis, and use rotations about the z and y-axis to move the sword down and up again.

Gimbal Lock

Compose rotation matrices

We first want to rotate to $\beta=\frac{\pi}{2}$. Let $R=R_{x} R_{y} R_{z}$, which is

$$
R=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right)\left(\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Since $\cos \frac{\pi}{2}=0$, and $\sin \frac{\pi}{2}=1$, the above becomes

$$
R=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right),
$$

which equals

$$
R=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\sin \alpha \cos \gamma+\cos \alpha \sin \gamma & -\sin \alpha \sin \gamma+\cos \alpha \cos \gamma & 0 \\
-\cos \alpha \cos \gamma+\sin \alpha \sin \gamma & \cos \alpha \sin \gamma+\sin \alpha \cos \gamma & 0
\end{array}\right) .
$$

Gimbal Lock

Simplification of rotation matrix

Using the facts that

$$
\begin{array}{r}
\sin (\alpha \pm \gamma)=\sin \alpha \cos \gamma \pm \cos \alpha \sin \gamma \\
\cos (\alpha \pm \gamma)=\cos \alpha \cos \gamma \mp \sin \alpha \cos \gamma
\end{array}
$$

we obtain

$$
R=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\sin (\alpha+\gamma) & \cos (\alpha+\gamma) & 0 \\
-\cos (\alpha+\gamma) & \sin (\alpha+\gamma) & 0
\end{array}\right)
$$

Gimbal Lock

From $\beta=0$ to $\frac{\pi}{2}$, we now want to rotate $\frac{-\pi}{6}$ about the z-axis, and from $\beta=\frac{\pi}{2}$ to π, we want to rotate $\frac{-\pi}{6}$ about the x-axis. But since

$$
R=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\sin (\alpha+\gamma) & \cos (\alpha+\gamma) & 0 \\
-\cos (\alpha+\gamma) & \sin (\alpha+\gamma) & 0
\end{array}\right)
$$

is a rotation matrix about the z-axis, changing α or γ has the same effect! The angle $\alpha+\gamma$ may change, but the rotation happens always about the z-axis with unexpected results.

Watch this Video by PuppetMaster's 3D experiences, CC-BY.

Gimbal Lock

Euler angles

Using Euler angles to steer pitch, roll, and yaw.

Pictures by MathsPoetry, CC BY-SA

Rotation Alternatives

How to avoid Gimbal Lock?

There are alternative rotations:

- Euler angles
- Axis-angle representation
- Quaternions

Axis angle representation

Euler vector

A rotation vector

$$
r=\theta \hat{e}
$$

where $\hat{e}=\left(e_{x}, e_{y}, e_{z}\right)^{T}$ is an arbitrary unit vector, and θ is the angle of rotation about the axis \hat{e}.

- No Gimbal Lock.
- Combining two rotations defined by Euler vectors is not simple.
- Cannot use LERP to interpolate.

Presentation Road Map

(1) Introduction

(2) Rotation Matrices in \mathbb{R}^{2}
(3) Rotation Matrices in \mathbb{R}^{3}

4 Gimbal Lock
(5) Quaternions

Quaternions

The holy grail of 3D rotations

- Introduced by William Rowan Hamilton in 1843
- An extension to complex numbers from two dimensions to three
- $i^{2}=j^{2}=k^{2}=i j k=-1$

by JP, CC BY-SA 2.0

Quaternions

Representation

Definition

A quaternion is a quadruple formed by a scalar w, and a vector $\mathbf{v}=(x, y, z)$. We write it as

$$
\mathbf{q}=(w, \mathbf{v}) .
$$

Quaternions

Unit Quaternions

Any rotation in \mathbb{R}^{3} can be represented by a unit quaternion.

Definition

A unit quaternion is a quaternion \mathbf{q}, such that $\|\mathbf{q}\|=1$, where $\|\mathbf{q}\|=w^{2}+x^{2}+y^{2}+z^{2}$.

All unit quaternions form a hypersphere in \mathbb{R}^{4}. Rotations happen on the surface of this hypersphere.

Quaternions

From axis-angle to quaternions

Given an axis defined by unit vector

$$
\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)
$$

and an angle
θ.

How do I obtain a rotation quaternion?

Quaternions

Complex numbers and \mathbb{R}^{2}

Any point in \mathbb{R}^{2} can be represented by a complex number, where the real part lays on the x-axis, and the imaginary part on the y-axis.

Euler's formula relates the trigonometric functions to the exponential function

Quaternions

Extending Euler's Formula

Let $\mathbf{i}=(1,0,0)^{T}, \mathbf{j}=(0,1,0)$ and $\mathbf{k}=(0,0,1)$. Given \mathbf{u} and θ, an extension to Euler's Formula says that

$$
\mathrm{e}^{w \mathbf{v}}=\mathrm{e}^{\frac{\theta}{2}\left(u_{x} \mathbf{i}+u_{y} \mathbf{j}+u_{z} \mathbf{k}\right)}=\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\left(u_{x} \mathbf{i}+u_{y} \mathbf{j}+u_{z} \mathbf{k}\right) .
$$

Conversion of an axis-angle to a rotation quaternion

Given a unit vector $\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right) \in \mathbb{R}^{3}$ and a rotation angle θ about \mathbf{u}, the corresponding unit quaternion \mathbf{q} is

$$
\mathbf{q}=\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \mathbf{u}\right) .
$$

Quaternions

Example

We want to rotate 90° about the y-axis using a quaternion.
We know $\mathbf{q}=\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \mathbf{u}\right)$. The y-axis can be represented by $\mathbf{u}=(0,1,0)$, and $\theta=\frac{\pi}{2}$. We obtain the unit quaternion

$$
\mathbf{q}=\left(\cos \frac{\pi}{4}, 0, \sin \frac{\pi}{4}, 0\right)
$$

Great. What do we do with this rotation quaternion now?

Quaternions

Rotation

Rotation

Any vector $\mathbf{v} \in \mathbb{R}^{3}$ can be rotated using a rotation quaternion \mathbf{q} by

$$
\mathbf{q p q}^{-1}
$$

where $\mathbf{p}=(0, \mathbf{v})$, using the Hamilton product.

What is the Hamilton product and how do you take the inverse of a quaternion?

Hamilton Product

Definition

Let $\mathbf{q}_{\mathbf{0}}=\left(w_{0}, \mathbf{v}_{\mathbf{0}}\right)$ and $\mathbf{q}_{\mathbf{1}}=\left(w_{1}, \mathbf{v}_{\mathbf{1}}\right)$. The Hamilton Product is defined as

$$
\mathbf{q}_{0} \mathbf{q}_{\mathbf{1}}=\left(w_{0} w_{1}-\mathbf{v}_{\mathbf{0}} \cdot \mathbf{v}_{\mathbf{1}}, w_{0} \mathbf{v}_{\mathbf{1}}+w_{1} \mathbf{v}_{\mathbf{0}}+\mathbf{v}_{\mathbf{0}} \times \mathbf{v}_{\mathbf{1}}\right) .
$$

Using transposes $\mathbf{q}_{\mathbf{0}}=\left(w_{0}, x_{0}, y_{0}, z_{0}\right)^{T}$ and $\mathbf{q}_{1}=\left(w_{1}, x_{1}, y_{1}, z_{1}\right)^{T}$, we can write

$$
\mathbf{q}_{0} \mathbf{q}_{1}=\left(\begin{array}{c}
w_{0} w_{1}-x_{0} x_{1}-y_{0} y_{1}-z_{0} z_{1} \\
w_{0} x_{1}+x_{0} w_{1}+y_{0} z_{1}-z_{0} y_{1} \\
w_{0} y_{1}-x_{0} z_{1}+y_{0} w_{1}+z_{0} x_{1} \\
w_{0} z_{1}+x_{0} y_{1}-y_{0} x_{1}+z_{0} w_{1}
\end{array}\right) .
$$

Warning

Quaternion multiplication is not commutative, $\mathbf{q}_{\mathbf{0}} \mathbf{q}_{1} \neq \mathbf{q}_{1} \mathbf{q}_{\mathbf{0}}$

Quaternion Inverse

Definition

The inverse of a quaternion $\mathbf{q}=(w, \mathbf{v})$ is computed as

$$
\mathbf{q}^{-1}=\frac{(w,-\mathbf{v})}{\|\mathbf{q}\|^{2}}
$$

Addition and subtraction is the same as with complex numbers.

Quaternions

Rotation matrix

Given a rotation quaternion $\mathbf{q}=(w, x, y, z)$, we can rotate any vector $\mathbf{v} \in \mathbb{R}^{3}$ using the

Rotation matrix

$$
R_{q}=\left(\begin{array}{ccc}
1-2 y^{2}-2 z^{2} & 2 x y-2 z w & 2 x z+2 y w \\
2 x y+2 z w & 1-2 x^{2}-2 z^{2} & 2 y z-2 x w \\
2 x z-2 y w & 2 y z+2 x w & 1-2 x^{2}-2 y^{2}
\end{array}\right)
$$

Quaternions

Compose rotations

Given a rotation defined by \mathbf{q}_{0}, followed by $\mathbf{q}_{\mathbf{1}}$. They can be composed as

$$
\mathbf{q}^{*}=\mathbf{q}_{1} \mathbf{q}_{\mathbf{0}}
$$

Example

Sword movement We rotate $\beta=\frac{\pi}{2}$ about the y-axis $v_{0}=(0,1,0)$, followed by $\alpha=\frac{-\pi}{6}$ about the x-axis $v_{1}=(1,0,0)$. We obtain the quaternions

$$
\mathbf{q}_{0}=\left(\cos \frac{\pi}{4}, 0, \sin \frac{\pi}{4}, 0\right), \quad \mathbf{q}_{1}=\left(\cos \frac{-\pi}{12}, \sin \frac{-\pi}{12}, 0,0\right) .
$$

Compose them $\mathbf{q}=\mathbf{q}_{\mathbf{1}} \mathbf{q}_{\mathbf{0}}=(w, x, y, z)$, we get

$$
\begin{aligned}
w & =\cos \frac{-\pi}{12} \cos \frac{\pi}{4}, & x & =\sin \frac{-\pi}{12} \cos \frac{\pi}{4} \\
y & =\cos \frac{-\pi}{12} \sin \frac{\pi}{4}, & z & =\sin \frac{-\pi}{12} \sin \frac{\pi}{4}
\end{aligned}
$$

Quaternions

Interpolation

The same as with complex numbers.

- LERP

$$
\mathbf{q}_{t}=(1-t) \mathbf{q}_{0}+t \mathbf{q}_{1}
$$

References and Links

Links:

- Gimbal Lock
- Rotating Objects Using Quaternions
- Understanding Quaternions

